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Linear Time-Invariant (LTI) System

* Response of a system

x(t) —| H P— y)

* The system is linear if

ayxq(t)+ax,(t) —s{ H > apy1(t)*razy,(t)

* The system is time-invariant if

x(t+T) —| H > y(t+T)




What’s Nice about LTI System?

« Can use superposition

- Easy conversion between time and frequency
response

* Most systems in real life are LTI systems
— Focus of this class

Phase Shift

Any linear circuit
With L,C,R,M
and dep. sources
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Example: Low Pass Filter (LPF)

* Input signal: v () =V, cos(ar) / Phase shift
. . t)=K-V_cos(wt+
We know that: V(") V S‘(\@
: Amp scale
R _ .
M o % (1) v;a) i(OR
i(r) =L

vo(t)=v () —RC%

l = t

dv
v (&) =v,(t)+7—>
s() O() dt




Exponential Representation

e Euler’s Theorem

e/t = cos(wt) + j sin(wt)

e sin(wt) and cos(wt) can be represented by linear
combination of complex exponential:

1 . .
cos(wt) = > (et + e I¥t)

1 . .
sin(wt) = 27 (et — eI¥t)
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Magic: Turn Diff Eq into Algebraic Eq

* Integration and differentiation are trivial with
complex numbers:

d .. . . 1 .
_ela)t — Za)eza)t jelwfdz_ — ._ela)t
dt 10,

 Any ODE is now trivial algebraic manipulations ...
in fact, we’ll show that you don’t even need to
directly derive the ODE by using phasors

* The key is to observe that the current/voltage
relation for any element can be derived for
complex exponential excitation
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Solving LPF with Phasors

* Let’s excite the system with a complex exp:

v = vo(t)+rdvo

dt se j to avoid confusion
v () =V’ /

b=l = Ve

NN

real complex

N Y/ N : o
Ve/" =V,e/" +7-jow-V,e

4 =V(1+ja)-2')
V, 1

Easy!!!
V (1+]a) r) y
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Magnitude and Phase Response

* The system is characterized by the complex
function

Ve |
M= =1 jw-o)

S

 The magnitude and phase response match our
previous calculation:

1

Vol _
J1+ (@)

Vs

H)-

< H(w)=—tan"' or
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Why did it work?

* Again, the system is linear:
y=L(x; +x,) =L(x)) + L(x,)

* To find the response to a sinusoid, we can find the
response to e'“t and e~'*t and sum the results:

i oot LTI System
e H

it LTI System
e H

1t —iot

e +e .| LTI System

) H
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_ |H(a)) ei(a)t+¢1)

_ |H(—a)) ei(—wt+¢2)

- H(w)e'" + H(-w)e ™
2




(cont.)

 Since the input is real, the output has to be real:
H(w)e' + H(—w)e™™
oy = H@ 2 (@)
 That means the second term is the conjugate of
the first:
‘H (—a))‘ = ‘H (a))‘ (even function)

<H(—w)=—<H(w)=—¢ (oddfunction)

* Therefore the output is:

(t) ‘H(&))‘ ( i(ot+¢) _|_e—i(0)l‘+¢))

= ‘H (w)|cos(wrt + )
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Phasors

* With our new confidence in complex numbers, we
go full steam ahead and work directly with them ...

we can even drop the time factor e'“! since it will
cancel out of the equations.

« Excite system with a phasor: J, = 1/1ef'<'51
- Response will also be phasor: 1, =V,¢/*

* For those with a Linear System background, we’re
going to work in the frequency domain
— This is the Laplace domain with § = Jjo
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Capacitor |-V Phasor Relation

* Find the Phasor relation for current and voltage in

a cap:

i (t)=C

@)
_ +
i (t)=1¢e"
() (=L v () ==
dt v.(t)=V.e"
[ e = ci[vcefa”] 0
dt
d 0t . (0t
CV.—e™" = joCV e’
dt
1 e = joCV.e™
[.=joCV,
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Inductor I-V Phasor Relation

o Find the Phasor relation for current and voltage
in an inductor:

. . jort + Cf
di(?) i(t)=Ie
=L W(t) = Ve v(t)% i(1)

Ve = Li[lef"”]
dt

d . .
LI- e = jo Lie™
Ve’ = jw Lle™

V=joLlI

A
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Impede the Currents !

« Suppose that the “input” is defined as the voltage
of a terminal pair (port) and the “output” is defined
as the current into the port:

Circuit i(t)=1e’" = ‘[‘ej(wtwi)

. + . o
® _ v(t) =Ve'™ =|V]e’
v(t)d) i(1) Arbitrary LTI
—O

 The impedance Z is defined as the ratio of the
phasor voltage to phasor current (“self”’ transfer
function)

Z(w)=H(w)=— J(4,-4))

I/

V_‘V
]
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Admit the Currents!

« Suppose that the “input” is defined as the current
of a terminal pair (port) and the “output” is defined
as the voltage into the port:

Circuit i(t)=1e’" = ‘[‘ej(wtwi)

. + . o
® _ v(t) =Ve'™ =|V]e’
v(t)d) i(1) Arbitrary LTI
—O

 The admittance Y is defined as the ratio of the
phasor current to phasor voltage (“self” transfer
function)

I 17| .
Y(ow)= H(o) = — = |—|e/% %)
(@)= H(@)= ‘V
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Voltage and Current Gain

* The voltage (current) gain is just the voltage
(current) transfer function from one port to
another port:

w0010 | A (b

Circuit

Vs _1V

G w) = — ej(¢2—¢1)
(@) il

G.(a)):1—2= L i)
| TIPS

— If |G| > 1, the circuit has voltage (current) gain
— If |G| < 1, the circuit has loss or attenuation
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Transimpedance/admittance

« Current/voltage gain are unit-less quantities

« Sometimes we are interested in the transfer of
voltage to current or vice versa

Circuit

w0Oiw Aty n 5 (b,

J(w) = Vz _ Vz e’/ =h) [Q]
1, 1,

K(w)= 1, _ 1, o’/ (=h) [S]
e h
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Direct Calculation of H (no DEs)

* To directly calculate the transfer function
(impedance, trans-impedance, etc) we can
generalize the circuit analysis concept from the
“real” domain to the “phasor” domain

* With the concept of impedance (admittance), we
can now directly analyze a circuit without
explicitly writing down any differential equations

« Use KVL, KCL, mesh analysis, loop analysis, or
node analysis where inductors and capacitors are

treated as complex resistors

A
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LPF Example: Again!

* Instead of setting up the DE in the time-domain,
let’s do it directly in the frequency domain

* Treat the capacitor as an impedance:

R ZR _____
" |
V() @ c == v > @ ‘e Vo
L L
time domain “real” circuit frequency domain “phasor” circuit

 We know the impedances:
ZR — R ZC —

({ L




Bode Plots

« Simply the log-log plot of the magnitude and
phase response of a circuit (impedance,
transimpedance, gain, ...)

* Gives insight into the behavior of a circuit as a
function of frequency

* The “log” expands the scale so that breakpoints in
the transfer function are clearly delineated

A
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Frequency Response of Low-Pass Filters

R |
0O AAA 0 20 log %l (dB)
+ ! 3 dB
VI- Ci) C — \“'(l 0 —=——T< ¢ —6 dl?)/roctave
—20 dB/decade
— —10
. . N\
\J _20 ________ I _______
|
. l 1 1 —al 0.1 l1 10 i w—a;(log sealed
T(@)=—% e 0
R I+ joRC 1+ jo/w,
joC
1
wO = — 3 ﬁ(Io scale)
RC . Wy .
1
T ()|

LT (w)=—-tan" (w/ w,)

W,z =, [rad/sec] 0]
a)
S =7— [Hz]
27 =

il



Frequency Response of High-Pass Filters

20 log

T(jw)
a \(dB)
A

C
—o—]}—+—o
| ¢

4+ 0 34dB =
+ , b
V. [ = R V, ~1o}- |
+20 dB/decade I
$es |
|
1

\—20
o ¢+ 0 A
R |

w
> ™ (log scale)

T(w)= =
R+— 1+
JjoC
o =
" RC
1
T ()| =

\/1+(a)0/a))2

LT(w)=tan™ (w, / o)

)
> o (log scale)

W, =0, [rad/sec]

w
f3dB =— [Hz]
27




Example: High-Pass Filter

» Using the voltage divider rule:

R
W
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: J—
H(w) = JjoL R

R+ joL 1+jwz

H(w) = JjoTt

1+ jor

JoT

® —> o0 H|—> =1

jot




Approximate versus Actual Plot

_____

« Approximate curve accurate away from breakpoint

* At breakpoint there is a 3 dB error

A Ii




HPF Phase Plot

Phase can be naturally decomposed as well:

< H(w) =< JOT

1+ jot

=< JOT+ <

| T 4
=——tan w7

I+ jor 2

First term is simply a constant phase of 90 degrees

The second term is the arctan function

Estimate arctan function:

1

<< —
T

45 -

Actual curve

1

w >> —




Power Flow

* The instantaneous power flow into any element is
the product of the voltage and current: P(¢) =i(¢)v(¢)

* For a periodic excitation, the average power is:
= [i(tv(r)dr
* In terms of sinusoids we have

= J|I| cos(wr +@,)|V|cos(wr +@,)dT
T

=I|-|V| | (coswt cos@, —sin @t s, )-(Cos®tcos@, —sinwising, )dt
T

=71V | dT cos®* wt cos®. cos@ + sin’ @¢sin@. sin@. + ¢ sin wEEos wt
N l Vv l A%

T

_vl

5 ———(CosQ, cos@, +sin@,sing, )=
@ 2-26
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Power Flow with Phasors

1]

cos(¢, I_ ?,)

Power Factor

av

* Note that if (¢; — ¢,) =, then Py, = %’cos (g) =0

* Important: Power is a non-linear function so we can'’t
simply take the real part of the product of the phasors:

P#Re[l V]
 From our previous calculation:

P= ‘]HV‘ cos(@. — @ ):lRe[]-V*] =1Re[1* V]
2 ) 2




Summary

« Complex exponentials are eigen-functions of LTI
systems
— Steady-state response of LCR circuits are LTI systems

— Phasor analysis allows us to treat all LCR circuits as
simple “resistive” circuits by using the concept of
impedance (admittance)

* Frequency response allows us to completely
characterize a system

— Any input can be decomposed into either a continuum or
discrete sum of frequency components

— The transfer function is usually plotted in the log-log
domain (Bode plot) — magnitude and phase

— Location of poles/zeros is key

A

=
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